A Novel Fault Early Warning Model Based on Fault Gene Table for Smart Distribution Grids
نویسندگان
چکیده
Abstract: Since a smart distribution grid has a diversity of components and complicated topology; it is very hard to achieve fault early warning for each part. A fault early warning model for smart distribution grid combining a back propagation (BP) neural network with a gene sequence alignment algorithm is proposed. Firstly; the operational state of smart distribution grid is divided into four states; and a BP neural network is adopted to explore the operational state from the historical fault data of the smart distribution grid. This obtains the relationship between each state transition time sequence and corresponding fault, and is used to construct the fault gene table. Then; a state transition time sequence is obtained online periodically, which is matched with each gene in fault gene table by an improved Smith–Waterman algorithm. If the maximum match score exceeds the given threshold, the relevant fault will be detected early. Finally, plenty of time domain simulation is performed on the proposed fault early warning model to IEEE-14 bus. The simulation results show that the proposed model can achieve efficient early fault warning of smart distribution grids.
منابع مشابه
Optimal Self-healing of Smart Distribution Grids Based on Spanning Trees to Improve System Reliability
In this paper, a self-healing approach for smart distribution network is presented based on Graph theory and cut sets. In the proposed Graph theory based approach, the upstream grid and all the existing microgrids are modeled as a common node after fault occurrence. Thereafter, the maneuvering lines which are in the cut sets are selected as the recovery path for alternatives networks by making ...
متن کاملFault Location in Active Distribution Networks Using Improved Whale Optimization Algorithm
To realize the self-healing concept of smart grids, an accurate and reliable fault locator is a prerequisite. This paper presents a new fault location method for active power distribution networks which is based on measured voltage sag and use of whale optimization algorithm (WOA). The fault induced voltage sag depends on the fault location and resistance. Therefore, the fault location can be f...
متن کاملOptimal DG Allocation and Thyristor-FCL Controlled Impedance Sizing for Smart Distribution Systems Using Genetic Algorithm
Recently, smart grids have been considered as one of the vital elements in upgrading current power systems to a system with more reliability and efficiency. Distributed generation is necessary for most of these new networks. Indeed, in all cases that DGs are used in distribution systems, protection coordination failures may occur in multiple configurations of smart grids using DGs. In different...
متن کاملDistributed Fault Detection Based on Credibility and Cooperation for WSNs in Smart Grids
Due to the increasingly important role in monitoring and data collection that sensors play, accurate and timely fault detection is a key issue for wireless sensor networks (WSNs) in smart grids. This paper presents a novel distributed fault detection mechanism for WSNs based on credibility and cooperation. Firstly, a reasonable credibility model of a sensor is established to identify any suspic...
متن کاملA Layered Fault Tree Model for Reliability Evaluation of Smart Grids
The smart grid concept has emerged as a result of the requirement for renewable energy resources and application of new techniques. It is proposed as a practical future form of power distribution system. Evaluating the reliability of smart grids is of great importance and significance. Focusing on the perspective of the consumers, this paper proposes a layered fault tree model to distinguish an...
متن کامل